Force Modulating Dynamic Disorder: Physical Theory of Catch-slip bond Transitions in Receptor-Ligand Forced Dissociation Experiments
نویسندگان
چکیده
Recently experiments showed that some adhesive receptor-ligand complexes increase their lifetimes when they are stretched by mechanical force, while the force increase beyond some thresholds their lifetimes decrease. Several specific chemical kinetic models have been developed to explain the intriguing transitions from the “catch-bonds” to the “slip-bonds”. In this work we suggest that the counterintuitive forced dissociation of the complexes is a typical rate process with dynamic disorder. An uniform one-dimension force modulating Agmon-Hopfield model is used to quantitatively describe the transitions observed in the single bond P-selctin glycoprotein ligand 1(PSGL-1)−Pselectin forced dissociation experiments, which were respectively carried out on the constant force [Marshall, et al., (2003) Nature 423, 190-193] and the force steadyor jump-ramp [Evans et al., (2004) Proc. Natl. Acad. Sci. USA 98, 11281-11286] modes. Our calculation shows that the novel catch-slip bond transition arises from a competition of the two components of external applied force along the dissociation reaction coordinate and the complex conformational coordinate: the former accelerates the dissociation by lowering the height of the energy barrier between the bound and free states (slip), while the later stabilizes the complex by dragging the system to the higher barrier height (catch).
منابع مشابه
Regulation of catch bonds by rate of force application.
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experim...
متن کاملCatch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
In biological adhesion, the biophysical mechanism of specific biomolecular interaction can be divided in slip and catch bonds, respectively. Conceptually, slip bonds exhibit a reduced bond lifetime under increased external force and catch bonds, in contrast, exhibit an increased lifetime (for a certain force interval). Since 2003, a handful of biological systems have been identified to display ...
متن کاملForce history dependence of receptor-ligand dissociation.
Receptor-ligand bonds that mediate cell adhesion are often subjected to forces that regulate their dissociation via modulating off-rates. Off-rates control how long receptor-ligand bonds last and how much force they withstand. One should therefore be able to determine off-rates from either bond lifetime or unbinding force measurements. However, substantial discrepancies exist between the force ...
متن کاملAdhesive dynamics simulations of the shear threshold effect for leukocytes.
Many experiments have measured the effect of force on the dissociation of single selectin bonds, but it is not yet clear how the force dependence of molecular dissociation can influence the rolling of cells expressing selectin molecules. Recent experiments using constant-force atomic force microscopy or high-resolution microscopic observations of pause-time distributions of cells in a flow cham...
متن کاملEntropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules.
We develop a physical model to describe the kinetic behavior in cell-adhesion molecules. Unbinding of noncovalent biological bonds is assumed to occur by both bond dissociation and bond rupture. Such a decomposition of debonding processes is a space decomposition of the debonding events. Dissociation under thermal fluctuation is nondirectional in a three-dimensional space, and its energy barrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006